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solution of incompressible N–S equations
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SUMMARY

Stabilized fractional step algorithm has been widely employed for numerical solution of incompressible
Navier–Stokes equations. However, smaller time step sizes are required to use for existing explicit and
semi-implicit versions of the algorithm due to their fully or partially explicit nature particularly for
highly viscous �ow problems.
The purpose of this paper is to present two modi�ed versions of the fractional step algorithm using

characteristic based split and Taylor–Galerkin like based split. The proposed modi�ed versions of the
algorithm are based on introducing an iterative procedure into the algorithm and allow much larger time
step sizes than those required to the preceding ones.
A numerical study of stability at acceptable convergence rate and accuracy as well as capability

in circumventing the restriction imposed by the LBB condition for the proposed iterative versions of
the algorithm is carried out with the plane Poisseuille �ow problem under di�erent Reynolds numbers
ranging from low to high viscosities. Numerical experiments in the plane Poisseuille �ow and the lid-
driven cavity �ow problems demonstrate the improved performance of the proposed versions of the
algorithm, which are further applied to numerical simulation of the polymer injection moulding process.
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1. INTRODUCTION

It is known that the fractional step algorithm allows the use of the standard Galerkin
approximation for the discretization of Navier–Stokes equations in the spatial domain, on
the other hand, the restriction imposed by the LBB condition in the interpolating shape func-
tions Nu and Np for the u–p mixed formulations may be also circumvented by using the
algorithm as a stabilization technique.The algorithm is based on introducing a split process in
temporal discretization of incompressible N–S equations initially presented independently by
Chorin [1, 2] and Temam [3] for incompressible �ow problems in the �nite di�erence method.
The split process was extended to �nite element context by Comini et al. [4] and Donea
et al. [5] followed by many di�erent applications for numerical solutions of incompressible
N–S equations.
The explicit (or semi-explicit) form of the algorithm is popular and widely employed in

practical engineering computations since its simplicity in programming and economy in com-
putational e�orts required for each time step, but at the expense of conditional stability, which
implies that the time steps will be inevitably small and a restriction in maximum time step
size is imposed to the algorithm.
On the other hand, it was concluded by Guermond et al. [6] that the fractional step algo-

rithm can circumvent the restriction imposed by the LBB condition in using the same low
order interpolation approximations for velocity and pressure variables in the time-dependent
incompressible N–S equations only if the non-incremental version of the algorithm is used
with the time step size larger than a critical value. Otherwise severe node-to-node spatial
oscillations occur in the resulting pressure �eld, which implies that a minimum time step
size requirement is presented for circumventing the restriction imposed by the LBB condition,
and therefore ensuring the stability of the algorithm regarding the use of the same low order
interpolations for velocity and pressure variables.
In modelling high-viscosity (low Reynolds number) �uid �ows such as molten polymer

�ow in injection moulding, the maximum time step size allowed for the explicit form of
the algorithm decreases with increasing viscosity that reduces the e�ciency of the numerical
solution procedure. In addition, the maximum time step size limitation will possibly con�ict
with the minimum time step size requirement described above. Though the limitation in
the maximum time step size to the explicit form of the algorithm can be alleviated in the
semi-explicit form to some extent, numerical results of test examples, particularly the lid-
driven cavity �ow problem, given in the present work indicate that the limitation still restrict
applications of the algorithm with acceptable e�ciency and accuracy. It means that the smaller
value of maximum time step size required in the explicit (or the semi-explicit) form will
become a choke point in applying the fractional step algorithm particularly in the modelling
of high or moderate viscosity �uid �ow.
In this paper two modi�ed versions of the fractional step algorithm are proposed for �nite

element solutions of incompressible N–S equations. It is based on introducing an iterative
procedure into the algorithm to make the convective term satisfy the momentum conservation
equation in an implicit sense. A similar scheme for introducing the iterative procedure into the
stabilized fractional step algorithm has been proposed for �nite element analysis in saturated
soil dynamics [7], which reduces in a decisive manner the computational e�ort. The iterative
versions of the algorithm proposed in this paper allow much larger time step sizes to be
used for the numerical solutions of incompressible N–S equations with di�erent values of the
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Reynolds number ranging from low to high viscosities. As a consequence, the minimum time
step size requirement imposed by the LBB condition will possibly not become an obstacle to
impede the application of the algorithm, particularly in the �ow problems with moderate or
high viscosities even the proposed versions belong to the category of the incremental (pressure
correction) method, which will be demonstrated by the numerical results of the test example
given later.
It should be stressed that the iterative procedure introduced into the algorithm will less

expend computational e�ciency, particularly in view of non-linearity of the non-Newtonian
(or even including the visco-elastic e�ect) �ow problems in which an iterative process is
essentially required to satisfy the non-linear momentum conservation condition.
Numerical experiments in the plane Poisseuille �ow under di�erent Reynolds numbers

ranging from low to high viscosities and the lid-driven cavity �ow problems demonstrate
the improved performance of the proposed versions of the algorithm, which are further applied
to numerical simulation of the polymer injection moulding process with high
e�ciency.

2. GOVERNING EQUATIONS AND CHARACTERISTIC BASED TEMPORAL
DISCRETIZATION

Momentum and mass conservation equations for incompressible �ow can be written as

�
Dui
Dt

=�
(
@ui
@t
+
@ui
@xj
uj

)
=
@�ij
@xj

− @p
@xi

+ �gi (1)

ui; i =0 (2)

where � is the �uid density, �gi the body forces, � the viscosity constant. The velocities ui
and the pressure p are the primitive independent variables. The deviatoric stresses are linked
to the strain rates and can be expressed by

�ij=2��̇ij=�
(
@ui
@xj

+
@uj
@xi

)
(3)

for Newtonian �ows.

2.1. Characteristic-Galerkin method and Taylor–Galerkin method

Before proceeding with the split procedure of the fractional step algorithm, we consider the
discretization of Equation (1) in time domain within a typical time sub-interval [tn; tn+1] with
�t= tn+1 − tn. With substitution of Equation (3) into Equation (1), the time discretization
of Equation (1) along the characteristic gives the form of the characteristic-Galerkin method
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as [8]
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@xi
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(
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@xk

@pn

@xi

)
(4)

in which un+1=2j =(un+1j + unj )=2, �∈ [0; 1] with �=0 for explicit forms and 0¡�61 for semi-
and fully-implicit forms and particularly

pn+�=(1− �)pn + �pn+1 (5)

An auxiliary variable u∗
i is introduced in such a way that the characteristic based split

(CBS) of Equation (4) is written in the form as below
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+
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= − � @

@xi
(pn+1 − pn) (7)

Equations (6) and (7) can be written in the matrix–vector form as

( �
�t
I3 − �ST(�D0)S

)
(u∗ − un) = �g− �un+1=2 · ∇un + ST(�D0)Sun − ∇pn

+
�t
2
�[(un · ∇un) · ∇un + un+1=2 · (un+1=2 · ∇(∇un))]

−(1− �)�t(un+1=2 · ∇)ST(�D0)Sun + (1− �)�t
×(un+1=2 · ∇)∇pn (8)

( �
�t
I3 − �ST(�D0)S

)
(un+1 − u∗) = −�∇�p (9)
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with g=[g1 g2 g3], �p=pn+1 − pn, D0 = diag(2 2 2 1 1 1), I3 the 3×3 identity matrix
and S the strain matrix (operator) linked the strain rates to the velocities and de�ned for
three-dimensional problems by

ST =

⎡
⎢⎣
@=@x1 0 0 @=@x2 0 @=@x3
0 @=@x2 0 @=@x1 @=@x3 0
0 0 @=@x3 0 @=@x2 @=@x1

⎤
⎥⎦ (10)

Taking the divergence of the vector equation (9), omitting the high order terms of Equation
(9) and substituting the incompressibility condition (2) into Equation (9) results in the Poisson
equation for the pressure given as

�∇2�p=
�
�t

∇ · u∗ (11)

The governing equations can be solved after spatial discretization in three steps:

(1) Solve Equation (8) for u∗ with un+1=2 taken as a known value, say equal to un in the
explicit form.

(2) Obtain �p from Equation (11) and pn+1 =pn +�p.
(3) Use Equation (9) to determine un+1 once u∗ and �p are known.

Alternatively Equation (1) can be discretized in time domain by the Taylor–Galerkin based
method [9, 10] written in the matrix–vector form

�
�t
(un+1 − un)=�g− (�u · ∇u)n+� + ST(�D0)Sun+� − ∇pn+� (12)

in which a Crank–Nicolson representation is adopted for both the di�usive terms and the
convective terms and which is similar to the temporal discretization of Equation (1) carried
out in Reference [10]. The Taylor–Galerkin based split (TGBS) of Equation (12) results in( �

�t
I3 − �ST(�D0)S

)
(u∗ − un)=�g− �un+� · ∇un+� + ST(�D0)Sun − ∇pn (13)

Equations (8), (11), (9) and Equations (13), (11), (9) constitute temporally discretized gov-
erning equations of the semi-implicit CBS and TGBS schemes, respectively.

2.2. I-CBS and I-TGBS schemes

To ful�ll the momentum conservation equation for incompressible �ow in the implicit sense
from the view of both convective and di�usive terms, an iterative procedure is introduced
to construct the two versions, named as I-CBS and I-TGBS, of the stabilized fractional step
algorithm based on Equations (8), (11), (9) and Equations (13), (11), (9), respectively, as
follows:

(1) let un+10 = un and the number of iterations i⇐ 1,
(2) compute un+1=2i =(un+1i−1 + u

n)=2 and use it to solve for u∗
i by Equation (8) for iterative

CBS scheme (I-CBS) or Equation (13) for iterative TGBS (I-TGBS) scheme,
(3) determine �pi by the solution of the Poisson equation (11) and obtain pn+1i =pn +

�pi,
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(4) solve Equation (9) to determine un+1i by using u∗
i and �pi,

(5) check for convergence of the ith iteration, if ‖un+1i −un+1i−1‖∞6 �, terminate the iteration
loop, otherwise i⇐ i + 1 and go to (2).

2.3. Existing CBS and TGBS schemes

Most of existing split schemes for temporal discretization was developed on the characteristic
or the Taylor–Galerkin basis. They may be classi�ed into the explicit or the semi-implicit
ones with the non-incremental or the incremental form according to if all the pressure gra-
dient terms are removed from Equation (8) at the prediction step and therefore the pressure
gradient appears in the non-incremental or the incremental form at Equation (11) (the projec-
tion step). Among them, the following three schemes are particularly considered to compare
their performances with the two proposed ones:

(1) The CBS scheme, in which all the di�usive (viscous) terms are retained at the right-
hand side of Equation (4), while all the pressure gradient terms are removed from
Equation (4) [8] (CBS-NE: CBS, Non-incremental, Explicit). The three temporally
discretized governing equations for the scheme can be written as

�
�t
(u∗ − un) = �g− �un · ∇un + ST(�D0)Sun + �t2 �[(u

n · ∇un) · ∇un

+un · (un · ∇(∇un))]− (1− �)�t(un · ∇)ST(�D0)Sun (14)

∇2pn+� =
�
�t

∇ · u∗ (15)

�
�t
(un+1 − u∗) =−∇pn+� + (1− �)�t(un · ∇)∇pn (16)

(2) The CBS scheme, in which all the di�usive (viscous) terms and the pressure gradient
term corresponding to tn are retained at the right-hand side of Equation (4) [9] (CBS-
IE: CBS, Incremental, Explicit). The three temporally discretized governing equations
for the scheme are written as

�
�t
(u∗ − un) = �g− �un · ∇un + ST(�D0)Sun − ∇pn

+
�t
2
�[(un · ∇un) · ∇un + un · (un · ∇(∇un))]

−(1− �)�t(un · ∇)ST(�D0)Sun + (1− �)�t(un · ∇)∇pn

(17)

�∇2�p =
�
�t

∇ · u∗ (18)

�
�t
(un+1 − u∗) = −�∇�p (19)

(3) The TGBS scheme adopting a Crank–Nicolson representation for the di�usive terms,
in which part of the di�usive term is removed to the left-hand side of Equation (4)
[10]; (TGBS, incremental, semi-implicit). The three temporally discretized governing
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equations for the scheme are written as

( �
�t
I3 − �ST(�D0)S

)
(u∗ − un) = �g− �un · ∇un + ST(�D0)Sun − ∇pn (20)

�∇2�p=
�
�t

∇ · u∗ (21)( �
�t
I3 − �ST(�D0)S

)
(un+1 − u∗) = −�∇�p (22)

3. SPATIAL DISCRETIZATION AND SOLUTION PROCEDURE

The fractional step algorithm performs time discretization before the spatial discretization.
The primitive unknown variables ui; p are spatially approximated using standard �nite element
shape functions Nu;Np and expressed in terms of their nodal values �ui ; �p as

ui=Nu �ui ; p=Np �p (23)

By using the standard Galerkin procedure, the weak forms of Equations (8), (11), (9)
along with the weak forms of corresponding natural boundary conditions, respectively, can be
written as

( �
�t
M+ �Ku − �K�u

)
(�u∗ − �un) =−�C�un −Ku �un + LT �pn + fs − ��t

2
(C1 −C2)�un

+(1− �)�tKu2 �un − (1− �)�tL2 �pn (24)

�Kp��p=− �
�t
L�u∗ + fp (25)

( �
�t
M+ �Ku − �K�u

)
(�un+1 − �u∗) = �LT��p (26)

which can be in turn used to solve for nodal values �u∗;��p; �un+1. The matrices and vectors
arising in Equations (24)–(26) are given as

M =
∫
�
NTuNu d�; Ku =

∫
�
(SNu)T�D0SNu d�

Kp =
∫
�
(∇Np)T(∇Np) d�; C =

∫
�
NTu (u

n+1=2 · ∇)Nu d�

C1 =
∫
�

@
@xk
(un+1=2k un+1=2j NTu )

@Nu
@xj

d�; C2 =
∫
�
NTuu

n
l

@unj
@xl

@Nu
@xj

d�

L =
∫
�
NTp(∇ ·Nu) d�; L2 =

∫
�

@
@xk
(un+1=2k NTu )(∇Np) d�

Ku2 =
∫
�

@
@xk
(un+1=2k NTu )S

T(�D0)SNu d�

(27)
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K�u =
∫
�
NTun2(�D0)SNu d� (28)

fs =
∫
�
NTu�g d� +

∫
�
NTu �t

n
d�− �t

2

∫
�
NTuu

n+1=2
k nk�unt d�

∼=
∫
�
NTu�g d� +

∫
�t
NTu �t

n+�
d� (29)

fp = �
∫
�
NTpn

T∇�p d� (30)

with

n2 =

⎡
⎢⎣
nx 0 0 ny 0 nz
0 ny 0 nx nz 0
0 0 nz 0 ny nx

⎤
⎥⎦ nT = [nx ny nz] (31)

�unt =−�un+1=2 · ∇un + ST(�D0)Sun − ∇pn (�= 1
2) (32)

where �t
n+�

is the traction at the boundaries �t =�tt + �tc at time tn+�, directly prescribed by
traction boundary conditions at �tt , including zero traction in the case of free surfaces of
�uids, or determined according to contact conditions of �uids with solid boundaries at �tc. It
is noted that the terms integrated along the boundaries, generated due to integration by parts
and associated with unknown nodal variables �u∗, �un+1 are removed to the left-hand sides of
Equations (24) and (26), respectively.
With the omission of the high order terms of both the pressure and the stress gradients

Equation (24) can be simpli�ed as( �
�t
M+ �Ku − �K�u

)
(�u∗ − �un)= − �C�un −Ku �un + LT �pn + fs − � �t

2
(C1 −C2)�un (33)

The iterative procedure described in the last section is applied for the solutions of
Equations (33), (25), (26) after the spatial discretization stated as follows:

(1) Let �un+10 = �un and the number of iterations i⇐ 1.
(2) Compute �un+1=2i =(�un+1i−1 + �u

n)=2 and use it to solve for �u∗
i by Equation (33).

(3) Determine ��pi by the solution of Equations (25) and obtain �p
n+1
i = �pn +��pi.

(4) Solve Equation (26) to determine �un+1i by using �u∗
i and ��pi.

(5) Check for convergence of the ith iteration, if ‖�un+1i − �un+1i−1‖∞6�, terminate the iteration
loop, otherwise i⇐ i + 1 and go to (2).

4. NUMERICAL RESULTS

4.1. Plane Poisseuille �ow problem

The plane Poisseuille �ow problem, as shown in Figure 1(a), is solved at di�erent Reynolds
numbers ranging from low to high viscosities to compare the performances of the proposed
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Figure 1. The plane Poisseuille �ow problem: (a) schematic diagram; and (b) mesh plot (h=0:2m).

two iterative versions I-CBS and I-TGBS of the stabilized fractional step algorithm with the
existing versions CBS-NE, CBS-IE, TGBS described in Section 2. The transient solutions for
the example problem are regarded as a device to obtain the steady state solution. Non-equal
order interpolation elements, i.e. T6P3 triangle elements with 6 noded quadratic interpolations
for the velocities and 3 noded linear interpolation for the pressure are used. The parameter
�=0:8 is used for the semi-implicit versions TGBS, I-TGBS and I-CBS.
The geometry of the problem along with the element mesh is shown in Figures 1(a) and (b).

No slip conditions are prescribed at the solid wall boundaries, i.e. the �uid is assumed to stick
itself to the boundaries and thus all velocity components on the boundaries ux= uy=0. The
tractions are prescribed to be zero at the exit of the mould cavity. For the plane Poisseuille
�ow problem uy=0 and hence @uy=@y at the exit can be assumed, with which the incompress-
ibility condition and the traction free condition at the exit lead to p=0 there. The velocity
components at the entry boundary are prescribed as uy=0 and ux(0; y)= �y(Y0 − y) with a
parabolic distribution along the line x=0, in which � is the coe�cient to normalize the �uid
�ux equal to unit at the entry, Y0 is the height of the cavity. The theoretical solution for the
pressure of the steady state Poisseuille �ow problem can be written as

p=2��(X0 − x) (34)

where X0 is the length of the cavity. The accuracy of the numerical solution for the problem
is measured by the relative error de�ned as

�=
1

n+ 1

n∑
i=0

|pTi − pCi |
pTi

×100% (35)

where n=5, pTi is the theoretical value of the pressure at xi=0; 1; 2; 3; 4; 5m independent of the
coordinate y of the point, pCi is the computational value of the pressure at xi=0; 1; 2; 3; 4; 5m
determined in such a way that

|pTi − pCi |=
m
Max
j=0

|pTi − pCi; j| (36)

in which m=5, j=0; 1; 2; 3; 4; 5, pCi; j=p
C(xi; yj), yj=0; 0:2; 0:4; 0:6; 0:8; 1:0m.

The problem is particularly tested with the three Reynolds numbers, i.e. (1) The �ow with
the low viscosity and the high Reynolds number (�=1Pa s, Re=1000); (2) The �ow with
the moderate viscosity and the moderate Reynolds number (�=100Pa s, Re=10); (3) The
�ow with the high viscosity and the low Reynolds number (�=2×104 Pa s, Re=5×10−2).
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Table I. Comparisons of maximum time step sizes �tmax(s) taken for di�erent versions of
the fractional step algorithm by using T6P3 elements in solutions of the plane Poisseuille
�ow problem with di�erent Reynolds numbers (in satisfaction of the convergence and the

accuracy requirements).

CBS-NE CBS-IE TGBS I-TGBS I-CBS

Re=1000 0:03 0:04 Oscillations, Oscillations, 0:04
hard to converge hard to converge

Re=10 0:01 0:01 0:2 1 0:2
Re=0:05 6×10−5 5×10−5 1 1 1

Table I gives the maximum time step sizes allowed to be used for the di�erent versions of
the stabilized fractional step algorithm for numerical solutions of the problem with the three
di�erent Reynolds numbers under acceptable convergence rate (number of time steps to arrive
in a steady state solution) and accuracy (the relative error �6 5%). It is observed that the two
proposed iterative versions I-CBS and I-TGBS perform much better in numerical solutions
of the problem with the high and the moderate viscosities than the existing explicit versions
CBS-NE and CBS-IE. It is noted that the e�ects of the iterative procedure introduced into the
algorithm can be shown by a comparison of the maximum time step sizes required to TGBS
and I-TGBS versions at the problem with the moderate viscosity, i.e. the maximum time step
size for the version I-TGBS is �ve times larger than that for the version TGBS. On the
other hand, the proposed iterative version I-CBS has much better performance in numerical
solutions of the problem with the low viscosity than the existing semi-implicit version TGBS,
for which the transient solutions do not converge to a steady state solution even after a huge
number of time steps and the node-to-node oscillations of the pressure �eld appear.
It is noted that both explicit versions CBS-NE and CBS-IE require so small values of

�tmax in numerical solutions of the problem with the high and the moderate viscosities and
both versions TGBS and I-TGBS do not work in numerical solutions of the problem with
the low viscosity, respectively. Hence, those versions cannot be accepted in corresponding
cases. In summary the proposed I-CBS version has a better overall performance than others
in numerical solutions of the problem with di�erent Reynolds numbers ranging from low to
high viscosities.
The plane Poisseuille �ow problem with the three di�erent viscosities is further employed

to test the capability of the two proposed iterative versions I-CBS and I-TGBS, in comparison
with the existing versions CBS-NE, CBS-IE, TGBS, in circumventing the restriction imposed
by the LBB condition as the interpolation approximations of the same low order for u–p
variables, i.e. T3P3 type elements, are used. Here �=0:5 is used for the semi-implicit versions
TGBS, I-TGBS and I-CBS.
The study of Guermond et al. [6] indicated that the fractional step algorithm can circum-

vent the restriction imposed by the LBB condition in using the same low order interpolation
element T3P3 only provided the non-incremental version of the algorithm is used with the
time step size larger than a critical value satisfying �t¿ chl+1, in which h is typical size of
the element, l the order of interpolation for u–p variables, c the parameter depending on the
material property data and the intrinsic characters of the problem in hand. According to the
conclusions stated by Guermond et al. [6], only the version CBS-NE among the �ve versions
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of the algorithm mentioned in this paper may circumvent the restriction imposed by the LBB
condition and use T3P3 element as the other versions I-CBS, I-TGBS and CBS-IE, TGBS
described above are incremental ones.
The numerical results of the tested problem obtained by using T3P3 elements indicate that

(1) For the problem with the low viscosity (�=1Pa s, Re=1000): The transient solutions
converge to the steady state solution for CBS-NE version as �t=0:09 s is used but with
a poor accuracy (�=21:1%), and what is worth, there is a low-grade node-to-node spatial
oscillation which occurs in the resulting pressure �eld near the exit as shown in Figure 2(a).
As time step sizes smaller than �t=0:09 s are used the accuracy of the solution is not
e�ectively improved while the oscillations develop. Figure 2(b) shows the development of
severe node-to-node oscillations of the pressure �eld as �t=0:01 s is used.
For I-CBS, I-TGBS and CBS-NE, TGBS versions the transient solutions converge to steady

state solutions, respectively, as di�erent time step sizes are used but with severe spatial
oscillations of the pressure �elds.
(2) For the problem with the moderate viscosity (�=100Pa s, Re=10): The transient

solutions converge to the steady state solution for CBS-NE version with an acceptable accuracy
�=5:0% and a resulting stable pressure �eld when �t=0:01 s is used. As the time step size
decreases the accuracy of the solution is not improved and node-to-node oscillations of the
steady state pressure �eld, as shown in Figure 3(a), appear when �t=0:001 s is used.
Both CBS-IE and I-CBS versions fail to circumvent the restriction imposed by the LBB

condition and result in the steady state pressure distributions with node-to-node oscillations.
The e�ect of the iterative procedure introduced into the algorithm is obviously observed
through the comparison of the performances in circumventing the restriction between TGBS

Figure 2. Pressure contours for Poisseuille �ow problem (Re=1000) with T3P3 elements: (a) CBS-NE
version, �t=0:09 s; and (b) CBS-NE version, �t=0:01 s.

Figure 3. Pressure contours for Poisseuille �ow problem (Re=10) with T3P3 elements: (a) CBS-NE
version, �t=0:001 s; (b) TGBS version, �t=1 s; and (c) I-TGBS version, �t=10 s.
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and I-TGBS versions. As the time step sizes �t¿1 s are used TGBS version gives stable,
converged steady state pressure solutions but with poor accuracies, while �t=1 s is used
a converged steady state pressure solution with accuracy �=5:1% is obtained but slight
node-to-node oscillations in the pressure distribution appear as shown by Figure 3(b). In
contrast, I-TGBS version gives a stable, converged steady state pressure solution with an
acceptable accuracy �=4:8% as shown by Figure 3(c) when �t=10 s is used. As time step
size decreases, corresponding converged steady state pressure solutions remain stable with
acceptable accuracies until �t=1 s is used when some extent of node-to-node oscillations of
the pressure solution as same as that described above for TGBS version occurs.
The performances of the �ve versions of the algorithm described above indicate how the

minimum time step limitation imposed by the LBB condition e�ects the application of T3P3
element in the example problem with the low and the moderate viscosities no matter the
non-incremental or the incremental versions are used.
(3) For the problem with the high viscosity (�=2×104 Pa s, Re=5×10−2): For the version

CBS-NE the transient solutions can only converge to a steady state solution with a reluctantly
acceptable accuracy �=5:5% when an unacceptable small time step size �t=3×10−4 s is
used. If one tries to use smaller time step sizes the accuracy cannot be improved, what is
worth, node-to-node oscillations of the resulting pressure distribution occur and develop with
decreasing time step size. Figure 4(a) shows severe oscillations of the pressure �eld appearing
at the exit as �t=1×10−5 s is used.
The extremely low value of maximum time step size �t=3×10−4 s required, which assume-

dly closes to the minimum time step size limitation imposed by the LBB condition, along
with the low accuracy (�=5:5%) of the solution makes the version over low e�cient and
severely restricts its application for the high viscosity �ow problem.
For the version TGBS the transient solutions do not converge to a steady state solution

after a huge number of time steps with the step size �t=0:2 s used. As the time step size

Figure 4. Pressure contours for Poisseuille �ow problem (Re=5×10−2) with T3P3 elements: (a)
CBS-NE version, �t=1 × 10−5 s; (b) TGBS version, �t=0:01 s; (c) I-TGBS version, �t=0:5 s;
(d) I-CBS version, �t=0:1 s; (e) I-CBS version, �t=0:01 s; and (f) I-TGBS version, �t=0:01 s.
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Table II. Performances of di�erent versions of the fractional step algorithm in circumventing the
restriction imposed by the LBB condition as the T3P3 element mesh shown in Figure 1(b)

is used for the plane Poisseuille �ow problem with di�erent Reynolds numbers.

CBS-NE TGBS I-TGBS I-CBS

Re=1000 Over large errors Oscillations Oscillations Oscillations
or oscillations

Re=10 0:001 s¡�t6 0:01 s Over large errors 1 s¡�t6 10 s Oscillations
O.K. or oscillations O.K.

Re=0:05 1×10−5 s¡�t Not converge
63×10−4 s or 0:01 s¡�t6 0:5 s 0:01 s¡�t6 0:1 s
O.K. oscillations O.K. O.K.

(but low accuracy)

decreases, though the convergence is improved but the node-to-node oscillations gradually
develop. Figure 4(b) shows the severe oscillations of the pressure �eld as the time step size
decreases to �t=0:01 s. In contrast, I-TGBS and I-CBS versions result in the steady state
solutions with �=3:7% and �=3:4%, respectively, at reasonable convergence rates as shown
in Figures 4(c) and (d) when quite large time step sizes �t=0:5 and 0:1 s are used corre-
spondingly. Moreover, as time step size decreases stable steady state solutions with su�cient
accuracies still result until it decreases to �t=0:01 s when the node-to-node oscillations ap-
pear, as shown in Figures 4(e) and (f) for I-CBS and I-TGBS versions, respectively, due to
the e�ect of minimum time step size limitation imposed by the LBB condition.
Table II summarizes the performances of the proposed iterative versions of the algorithm

in comparison with the existing versions CBS-NE and TGBS in circumventing the restriction
imposed by the LBB condition as T3P3 elements are used in the example problem. It should
be remarked that the conclusions given above by Guermond et al. [6] was not fully true,
particularly in view of the following facts:

(1) The fractional step algorithm may circumvent the restriction imposed by the LBB
condition not only by using the non-incremental versions as indicated by Guermond
et al. [6] but also by using the incremental versions such as the proposed I-CBS and
I-TGBS ones at certain circumstances.

(2) The capability of the di�erent versions of the algorithm in circumventing the restric-
tion is related to the Reynolds number (or the viscosity) of the �ow problem in hand.
Actually for the present plane Poisseuille �ow problem, the non-incremental version
CBS-NE is rather reluctant (with low accuracy) in circumventing the restriction in the
cases with the moderate and the high viscosities; while the proposed incremental ver-
sions I-TGBS and I-CBS are capable of circumventing the restriction in the moderate
and the high viscosity cases or in the high viscosity case, respectively, with acceptable
accuracies.

4.2. Lid-driven cavity �ow problem

As the second example a lid-driven cavity �ow problem with the cavity sizes 1×1m2 is con-
sidered. The enforced boundary conditions for the velocities and the pressure, i.e. ux= uy=0
on the boundaries AB, BC, CD, ux=1m=s, uy=0 on the boundary AD and p=0 at the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:395–416



408 X. LI AND X. HAN

point B, are shown in Figure 5(a). The �nite element mesh is plotted in Figure 5(b). The
transient solutions for the example problem will converge to a steady state solution.
To demonstrate the performance of the proposed iterative versions of the algorithm in

stability, accuracy and e�ciency, the lid-driven �ow in the cavity is analysed for two di�erent
Reynolds numbers, i.e. Re=1000 and Re=100, respectively.
For the case with lower Reynolds number Re=100, the streamlines and the pressure con-

tours at the steady state obtained by using the proposed version I-CBS with the time step
size �tmax =0:08 s are illustrated in Figures 6(a) and (b). The shape of the streamlines, the
pressure contours and the position (0.61, 0.74) of the eddy centre shown in Figures 6(a)
and (b) agree well with the corresponding reference results [11–13], particularly the positions
(0.617, 0.734) and (0.617, 0.742) of the eddy centres for the example given by Ghia et al.
[11] and Schreiber et al. [13], respectively.
The time step size �tmax =0:1 s can be taken for the version I-TGBS to run the example

and to obtain the results shown in Figures 6(c) and (d), similar to those given in Figures
6(a) and (b) by using the version I-CBS. To indicate the e�ect of the iterative procedure
the example is performed again by using the version TGBS. It is noted that only one half a
maximum time step size for I-TGBS, i.e. �tmax =0:05 s, can be taken for the version TGBS
to obtain the results comparable with those given by the version I-TGBS. It is also pointed
that the explicit version CBS-NE requires much smaller time step size �tmax =2×10−3 s to
ensure the stability of the algorithm for running the example. Figure 6(e) shows pro�les of
the velocity in the u-direction along the centre-line (0:5; y) given by the di�erent versions
with similar accuracy, which agree well with the reference results given by Ghia et al. [11].
Figures 7(a) and (b) illustrate the streamlines and pressure contours at the steady state for

the case with higher Reynolds number Re=1000, obtained by using the proposed version

Figure 5. The lid-driven cavity �ow problem: (a) geometry and boundary
conditions; and (b) mesh plot (h=0:05m).
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Figure 6. Solutions of the lid-driven cavity �ow problem with Re=100: (a) streamlines,
I-CBS, �t=0:08 s; (b) pressure contours, I-CBS, �t=0:08 s; (c) streamlines, I-TGBS, �t=0:1 s;
(d) pressure contours, I-TGBS, �t=0:1 s; and (e) pro�les of the velocity in the u-direction

along the centre-line (0:5; y).
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Figure 7. Solutions of the lid-driven cavity �ow problem with Re=1000: (a) streamlines,
I-CBS, �t=0:03 s; (b) pressure contours, I-CBS, �t=0:03 s; (c) streamlines, I-TGBS, �t=0:1 s;
(d) pressure contours, I-TGBS, �t=0:1 s; and (e) pro�les of the velocity in the u-direction

along the centre-line (0:5; y).
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I-CBS with �t=0:03 s. It is observed from Figure 7(a) that the shapes of the three eddies
including the so-called primary (P), the �rst bottom left (BL) and the �rst bottom right
(BR) eddies, the positions of the eddy centres P:(0:53; 0:57), BL:(0.083,0.072), BR:(0.87,0.11)
obtained by the proposed version I-CBS agree well with the reference results of Ghia et al.
[11], in which the positions of eddy centres are given as P:(0:531; 0:563), BL:(0.086,0.078),
BR:(0.859,0.109), and the reference results of Schreiber et al. [13], in which the positions
of eddy centres are given as P:(0:529; 0:564), BL:(0.086,0.071), BR:(0.864,0.107); while the
pressure contours illustrated in Figure 7(b) agree well with those, as the reference solutions,
given in Reference [9]. Figure 7(c) and (d) give the results obtained by using the version
I-TGBS with the time step size up to �t=0:1 s, which are very close to the results illustrated
in Figures 7(a) and (b), respectively. In contrast, to obtain the results with the accuracy and
the converge rate similar to the results given in Figures 7(c) and (d), a maximum time step
size �tmax =0:01 s, one-tenth of the time step size for the version I-TGBS, can be only taken
for the version TGBS to run the problem. It is also noted that much smaller maximum time
step size �tmax =0:001 s can be only taken for the example as the explicit version CBS-NE
is used. Figure 7(e) shows pro�les of the velocity in the u-direction along the centre-line
(0:5; y) given by the di�erent versions with similar accuracy, which agree well with the
reference results given by Ghia et al. [11].

4.3. Injection moulding problem

Finally, we apply the proposed version I-CBS of the algorithm to simulate the injection
moulding process of the molten polymer.
The geometry of the mould cavity to be �lled with the molten polymer is shown in

Figure 8. By symmetry, only one half of the mould cavity with the �lled molten poly-
mer are taken and discretized. The coordinates of the points which characterize the geometry
of the mould cavity are A(0; 0), B(2:0m; 0), C(2:0m; 2:6m), D(3:0m; 2:6m), E(3:0m; 3:2m),
F(1:0m; 3:2m), G(1:0m; 1:0m), H (0; 1:0m), as shown in Figure 8. The material parameters
of the molten polymer are �=1000 kg=m3, �=2×104 Pa s. Slip-wall boundary conditions are
assumed to simulate wall-slip phenomenon at the solid boundaries, where the shear stress may
frequently surpass the critical threshold and �uid slippage at the solid boundaries occurs. The
slip coe�cient �=5×10−4 s=kg used in Navier’s slip condition [14, 15] is assumed to govern

Figure 8. Schematic diagram of a typical �lling mould.
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Figure 9. The evolution of the mesh with increasing �lled molten polymer mass: (a) t=2:8 s;
(b) t=5:6 s; (c) t=8:0 s; and (d) t=9:8 s.

�uid slippage of the molten polymer against the solid boundaries. The injection velocities of
the molten polymer at the entry of the mould are prescribed as ux=0:5m=s, uy=0. T6P3
element mesh updated with the �lling process of the molten polymer is used to model the
�lled polymer domain with time step size �t=0:05 s.
The material movement of the molten polymer in the �lling process is described by means

of the ALE referential con�guration with referential particle velocities [16, 17]. The additional
equations required to determine the movement of mesh nodes on the free surface is introduced
in a self-adaptive manner, which makes it possible to properly capture the moving free surface
in numerical simulation of the �lling process in di�erent types of complex shaped moulds.
The free surface update procedure proceeds according to the movements of the mesh nodes
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on the free surface de�ned as material points and their neighbouring mesh nodes in the �lled
zone, while the rest of mesh nodes are tackled as the spatial, i.e. the Eulerian, points �xed in
the �lled zone. Di�erent types of the wall-touching nodes on the free surface are analysed and
corresponding schemes to tackle them are developed. The real-time mesh generation of the
domain with variable mass of the �lled polymer is simpli�ed as a polygon’s triangulation in
the �lled zone near the moving �lling front at every given number of time steps. In addition,
a local Laplacian smoothing scheme is proposed to improve the mesh quality e�ectively.
Figures 9–11 illustrates the evolutions of the mesh, the velocity distributions and the pres-

sure contours of the molten polymer domains �lled in the mould cavity at the di�erent dis-
crete time levels t=2:8; 5:6; 8:0; 9:8 s. It is observed that the negative pressure region appears in

Figure 10. The velocity distributions within the �lled molten polymer domains at: (a) t=2:8 s;
(b) t=5:6 s; (c) t=8:0 s; and (d) t=9:8 s.
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Figure 11. The pressure contours within the �lled molten polymer domains at: (a) t=2:8 s;
(b) t=5:6 s; (c) t=8:0 s; and (d) t=9:8 s.

Figure 11(a), which means the pressures at the region are less than the datum pressure (p=0)
de�ned to equal the atmosphere pressure 1×105 Pa. It can be attributed to the abrupt increase
of the cross section at the �rst corner of the mould, where the transiting melt polymer tends
to behave as the expansion like �ow that result in the decrease of the pressures at the region.
In addition, it is noted that it occurs at the early stage of injection moulding process, when
the pressures of the �lled melt polymer do not fully develop, that can be explained why the
negative pressure region does not occur at the second corner of the mould cavity at the time
when the front of the melt polymer passes through there as shown in Figure 11(c).
It is remarked that the proposed I-CBS algorithm allows the time step size �t=0:05 s used

for the present example, while the maximum time step size allowed to CBS-NE or CBS-IE
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algorithm for the example is only �tmax =10−4 s, which implies more than 105 time steps
required to take in order to complete the simulation of the injection moulding process of
the present example, and prohibits, in fact, the use of the explicit algorithms CBS-NE and
CBS-IE in numerical simulations of practical polymer moulding processes.

5. CONCLUSIONS AND DISCUSSIONS

The two versions of the fractional step algorithm are presented in this paper. They are
developed on the basis of introduction of an iterative procedure into existing CBS and
Taylor–Galerkin (like) based split schemes of the algorithm, respectively, to make the convec-
tive terms satisfy temporally semi-discretized equations governing the momentum conservation
in the implicit Euler sense. Numerical study ful�lled in this paper indicate that

(1) The introduction of the iterative process into the fractional step algorithm enhances the
critical time step size to ensure the stability of the algorithm in general and particularly
for the �ow problems with moderate and high viscosities. It also makes the incremental
(pressure correction) versions of the algorithm, for instance the proposed versions I-
CBS and I-TGBS, allow the use of the same low order interpolations for velocity and
pressure variables, for instance T3P3 element interpolations, in the �ow problems with
high viscosities, even both of them were excluded by the study of Guermond et al.
[6] for justi�cation of using T3P3 type element.

(2) The proposed I-CBS version has a better overall performance in maximum time step
size allowed, under comparable convergence rate, stability and accuracy, than other
tested versions in numerical solutions of the plane Poisseuille �ow and the lid-driven
cavity �ow problems with di�erent Reynolds numbers ranging from low to high vis-
cosities.

(3) The e�ect of the iterative process in enhancing the maximum time step size allowed
to be taken is particularly indicated by a comparison between the maximum time step
sizes for TGBS and I-TGBS versions taken for the �ow problems with di�erent vis-
cosities, in which the in�uence of the convective term to the momentum conservation
equation is rather essential.
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